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ABSTRACT 

An s-system of convex sets is the system of shadows of a given convex set 
cast on to a subspace by a beam of light whose direction varies. Here the 
convexity properties of s-systems are investigated, and, in the final section, 
a relationship with the projection functions of convex sets is established. 

In three-dimensional space, the shadow of a convex set cast on to a plane by a 

parallel beam of  light is a convex region. If  we let the direction of the beam vary, 
we get a system of convex regions in the plane which will be called a shadow 
system of convex sets, or, more briefly, an s-system. The purpose of this short 
paper is to investigate the properties of s-systems. In particular it will be shown 
that if an s-system is parametrised in a suitable way, many geometrical functionals 
such as the volume, surface area, diameter, etc., are convex functions of the system 
parameter. 

Although there is no exact theory of duality in the study of convex bodies, 
s-systems seem, in some sense, to play the part of duals to Minkowski concave 
systems. This duality arises because, whereas an s-system consists of the projec- 
tions of  some convex set in higher-dimensional space, a Minkowski concave 
system may be considered as arising from the parallel sections of a such a set 
[2, p. 33]. 

S-systems are closely related to the process of  Steiner symmetrisation [-2, p. 69], 
and, in a one-dimensional form, occur implicitly in the works of  many authors 
(compare, for example, the continuous symmetrisation of P61ya and Szeg6 
['5, p. 200] and the linear parameter system of Rogers and Shephard [-6, p. 95]). 

§1. Definitions and Elementary Properties. In Euclidean space o f  n + 1 
dimensions, E n+ l, let ~ be any non-zero vector, K be any closed bounded convex 

set, and . ~  any hyperplane (subspace of n dimensions). Then we define S(~, K, . ~ )  
(the shadow of K on ~ in the direction ~) to be 

.g~nZ(K, ~) 
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where Z(K, 0 is the cylinder {x + t~ I x e K, - oo < t < oo} containing K with 
generators in the direction ~. 

Let a be any fixed vector in E n+1 not parallel to a~f. Since the definition is 
affm¢ invariant there will be no loss of generality in assuming that a is a unit vector 
normal to ~,~. Let u be a variable vector parallel to ~ ,  and let 

K(u) = S(a + u, K, ~ ) .  

Then the system of convex sets {K(u)}, as u varies, is called an s-system, and u is 
the system parameter. The s-system will be said to originate from the set 
K c E  n + l  • 

Since, dearly, S(a + u, x + (a, ~ )  = x - (u for any real number (, an alter- 
native definition of K(u) is 

K(u) = {x - ~u Ix + ~a ¢ K} 

for each u. Written in this way, it is easy to see that if u is restricted to lie on a line, 
we obtain the linear parameter system of [6]. 

Since S(~,K, ~ )  is an affine image of the orthogonal projection of K on to 
a hyperplane normal to ~, many elementary properties of s-systems follow im- 
mediately from the corresponding properties of orthogonal projections. For 
example: I f  all the sets K(u) of an s-system are centrally symmetric, then so is 
the set K from which they originate. The corresponding result for orthogonal 
projections was first proved by Blaschke and Hessenberg, see [2, p. 124]. 

As a second example, we mention the (rather surprising) fact if {Ki(u)} and 
{K2(u)) are two s-systems such that 

(2) vn(Kl(u)) < vn(K2(u)) 

for all u, then it is possible for 

(3) v~+I(KI) > vn+l(K2). 

(Here vn(X) means the n-dimensional volume or content of the set X.) The cor- 
responding result for orthogonal projections must have been known for a long 
time, but does not seem to appear in the literature; we therefore give an example 
below. The question of whether (2) implies vn+ ~(K1) < Vn+l(K2) if we restrict K1 
and K2 to be centrally symmetric is still open. An answer would be interesting 
since this question is dual (in some sense) to an unsolved problem of Busemann 
and Petty [3, p. 88] about the cross-sections of centrally symmetric bodies. 

Let K1 be any ball in E s, and K~ be any non-spherical body of constant brightness 
([2, p. 140] and [1, p. 151]) whose orthogonal projection (and therefore shadow) 
in any direction is equal in volume to that of KI.  

By Cauchy's surface area formula [2, p. 48] and the isoperimetrictheorem 
[2, p. 111] it follows that vn+ l(Kt) > vn+ I(K~). If we dilate K~ slightly, we obtain 
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a body K 2 which satisfies (2), and, if the dilation is small enough, will satisfy (3) 
also. 

Let Ho, Hi be two given convex sets in ~ .  Then it will not, in general, be possible 
to find an s-system which contains them both. A criterion for this is: 

(4) Let Ho, H 1 be any two closed, bounded convex sets and u o, u I be any 
two vectors in E n. Then there exists an s-system (K(u)) such that 

K(uo) = Ho, K(Ul) = H1 

i f  any only i f  P(Ho, ~ )  = P(H1, ~), where P(H, ~ )  is the orthogonal projection 
of H on to a hyperplane ~ c ~v normal to the vector Uo - ul .  

The corresponding criterion for more than two sets H~ is not known. Clearly 
(4) is necessary since, by the properties of orthogonal projection, both P(K (Uo), ~ )  
and P(K(ui), ~1) are equal to P(K, ~) .  It is also sufficient, for if a is any unit vector 
in E n+ 1 normal to the hyperplane ~ '  in which Ho, H1 lie, then we may put 

K = Z(Ho,a + Uo) n Z (HI , a+  ui) 

and it is easily verified that Ho = K(uo) and H1 = K(Ul). This proves (4). 
There will be many s-systems containing the given sets Ho and Hi ,  but for any 

such system {K'(u)}, it is clear that K' c K .  Hence the system defined above is, in an 
obvious sense, the 'maximal' one. It may be called a linear s-system by analogy 
with a linear Minkowski system, which is the 'minimal' concave system containing 
two given sets. 

If  rio - K(uo), H1 = K(u~), then the system of sets K((1 -O)uo+Ou~)(O <= O< 1), 
may, besides being part of an s-system, be a Minkowski linear system. By [2, p. 94] 
this occurs if and only if one of the sets Ho, H~ can be produced from the other 
by being 'stretched' in a direction normal to the hyperplane ~.  

If  H1 is the reflection of Ho in the hyperplane ~ ,  then Ho and Hi satisfy con- 
dition (4)and we may, as above, construct a linear s-system {K(u)} with K(uo)= Ho, 
K(ul)= H1 for suitable vectors Uo, ul .  Such a system is invariant under reflection 
in ~ .  Further K(½(Uo + ul)) is the result of applying Steiner symmetrisation 
[2, p. 69] to Ho (or to Hi). This is the relation between s-systems and Steiner 
symmetrisation mentioned in the introduction. 

§2. Convexity Properties of s-systems. 

(5) Let {K(u)} be an s-system of convex sets in E ~. Then the volume v~(K(u)) 
is a convex function of the system parameter u. 

We present two short proofs of this basic result: 
(i) As we have already noted, if u is restricted to lie on a line, then {K(u)) is a 

linear parameter system, and so by [6, p. 95], v~(K(u)) is a convex function of u. 
Since this is true for every line vn(K(u)) is a convex function of u in E ~. 

(ii) Since a is a unit vector normal to ,g~', the equality 
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v,(S(a + u , K , ~ ) )  = (n + 1)v(a + u , K , K ,  . . . ,K)  

holds, where the expression on the right is the mixed volume of  the line segment 
corresponding to the vector a + u, and the set K taken n times. But Minkowski 

proved that this mixed volume is a convex function of  a + u (see [2, p. 44]) and 

so v,,(K(u)) is a convex function of u. 
Minkowski's argumenta lso applies to the mixed volume v(a + u, KI,  K2 ," ' ,  K,),  

and so we deduce the following generalisation of  (5): 

(6) Let {Kx(u)}, {K2(u)}, ..., {K,(u)} be any n, not necessarily distinct, s-systems 
with the same parameter u. Then the mixed volume v(Kl(u), K2(u),.. . ,  K,(u)) is a 

convex function of u. 
A number of  special cases are of  interest. Let K~ = K2 . . . . .  K, = K and let 

Kr+l = Kr+2 . . . . .  Kn = B n, an n-dimensional unit ball lying in ~g', so that 
B"(u) = B" for all u. Taking r = n - 1 we deduce: 

(7) I f  {K(u)} is any s-system in En, then the (n - 1)-dimensional surface area 
a(K(u)) is a convex function of u. 

An alternative proof of (7) can be constructed from (10) and the fact that, by 
Cauchy's surface area formula, the surface area is a constant multiple of  the 
average area of  projection on to a hyperplane. I f  we take r = 1 we obtain: 

(8) I f  {K(u)} is any s-system, then the mean width of K(u) is a convex function 

ofu.  
Other values of r lead to convex functionals, of  which the following special 

case will be used later: 

(9) Let {K(u)} be an s-system in E r" with the property that all the sets K(u) 
have dimension r. Then v,(K(u)) is a convex function of u. 

A system of this type arises (for r < n) if and only if K is r-dimensional. 
Futher special cases of (6) arise when we take some of  the sets K to be balls of  

dimension lower than n. Let ~ be any r-dimensional subspace of .~ ,  and, as 
above, write P(H,~)  for the orthogonal projection of  any set H on to ~ .  Let 
K,+~ =K,+2 . . . . .  K , = B  -" be an (n - r)-dimensional ball in aft normal to ~ .  
Then B"-'(u) = B "-r (for all u) and since the mixed volume 

v(K(u),..., K(u), B"-', . . . ,  

(in which K(u) occurs r times and B"-" occurs (n - r) times) is a constant multiple 

of vr(P(K(u), ~)) ,  we deduce: 

(I0) Let {K(u)} be any s-system in E" and ~ any linear subspace ofr dimen- 
sions. Then vr(P(K(u), ~))  is a convex function of u. 

The case r = n - 1 (so that ~ is a hyperplane in E") leads to the alternative 
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proof of (7) mentioned above. Since the supremum of a set of convex functions 
is also a convex function, we may deduce also: 

(11) Let {K(u)} be any s-system in E ~. Then the maximum brightness of K(u) 
is a convex function of u. 

The maximum brightness (defined by analogy with 'sets of constant brightness') 
is the maximum (n - 1)-dimensional volume of the projections of K(u) on to 
hyperplanes. 

The case r = 1 yields: 
(12) Let {K(u)) be any s-system. Then the width of K(u) in a given fixed direc- 

tion is a convex function of u. 

If  we average over all directions, we obtain an alternative proof of (8). I f  we take 
the supremum over all directions, we obtain: 

(13) Let {K(u)} be any s-system, then the diameter of of K(u) is a convex 
function of u. 

Statement (10) may also be established from: 

(14) I f  {K(u)} is any s-system, and ~ is any r-dimensional subspace, then 
{P(K(u),~I)} is also an s-system, the system parameter being P(u, ~). 

For let ~*  be any (r + 1)-dimensional subspace through ~ and normal to 
Then projecting orthogonally on to ~*  we see that 

P(K(u), ~ )  = P(K(u), ~l*) = P(S(a + u, K, ~ ) ,  ~*) 

= S(P(a + u, ~*), P(K, ~*), P(v~ ,°, Y~*)) 

= S(a + P(u,~*),P(K,~*),P(,g',Yl*)) 

which, as u varies, is an s-system in ~ with parameter P(u,~*) =P(u ,~) .  
Other convex functionals can be defined in terms of convex polytopes inscribed 

in K(u): 

(15) Let fs(X ) be the functional defined as the maximum n-dimensional volume 
of all polytopes with at most s vertices included in the set X. Then for any s- 
system {K(u)} in E",fs(K(u)) (s > n + 1) is a convex function of u. 

Let IIs be any convex polytope, with a t  most s vertices, included in the set K. 
Then S(a + u, Hs, ~ )  c S(a + u, K , .~ )  and, further S(a + u, Hs,ovf) is a convex 
polytope with at most s vertices. Conversely, any polytope with at most s vertices 
included in K(u) can arise in this way as a shadow of a suitable I-I s c K. Hence 

f~(K(u)) = sup v~(S(a + u, II~, ~ ) .  
I I s c K  

But, by (5), v~(S(a + u, IIs ,~" ) isIa convex function of u for each II~, and so, 
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being a supremum of convex functions, f~(K(u)) is also a convex function of u. 
This proves (15). 

In an exactly similar manner, using (6) instead of (5), we may deduce a statement 
corresponding to (15) concerning the maximal ( n -  1)-dimensional surface area 
of polytopes, with at most s vertices, included in K(u). 

(16) Let js(X) be the maximum sum of the lengths of the ½s(s - 1) line segments 
joining s points belonging to the convex set X. Then for any shadow system 
{K(u)}, j,(K(u)) is a convex function of u. 

For the proof, take T s as any set of s points belonging to K. Then S(a + u, T s , ~ )  
is a set of s points belonging to K(u), and the sum of the lengths of the joins of 
these points is 

j(T~, u) = ~, vl(S(a + u, (tit j), ~ ) )  
l~i<j<=s 

where T~ = {tl , '" , t~} and (t,tj) is the line segment joining h to t~. By (9), with 
r = 1, each term v~(S(a + u, (t~tj), ~ )  is a convex function of u, and so, being a sum 
of convex functions, j(Ts, u) is also convex. Now 

js(K(u)) = sup j(T~, u) 
Ts~K 

and so, being a supremum of convex functions, j~(K(u)) is also a convex function 
of u. This proves (16). 

If  we put s = 2 in (16) we obtain (13) again. 
Because of the relation between s-systems and Steiner symmetrisation mentioned 

at the end of §1, it follows that:  

(17) Let f (X)  be any functional defined on convex sets X in E n, with the pro- 
perties: 

(i) for any s-system {K(u)}, f(K(u)) is a convex function of u, and 
(ii) f ( X ) = f ( X ' ) ,  where X'  is the reflection of X in any hyperplane, 

then the functional f (X )  is not increased by Steiner symmetrisation of X. 

Thus, for example, the surface area, mean width, maximum brightness and 
diameter of a set tend to be decreased by Steiner symmetrisation (see (7), (8), (11), 
(13)). The volume vn(X) is left invariant by Steiner symmetrisation, which is a 
consequence of the fact that if K(u) is any linear s-system joining Ho = K(uo) and 
nl=K(u l ) ,  then vn(K(,~Uo+(l - 2)ul)) is, for 0 < 2 < 1, a linear function of L 
Hence, for a symmetrical linear s-system, it is constant. 

The converse of (16) is not true, in fact many interesting and important func- 
tionals, such as the circumradius, reciprocal of the inradius, reciprocal of the 
breadth, moment of inertia, electrical capacity, are decreased by Steiner sym- 
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metrisation, yet none of these are convex functions on general s-systems, or even 
on linear ones. The proofs of these asertions are omitted. For those concerning 
moments of inertia and electrical capacity (as well as other quantities of a physical 
nature), the reader ir referred to the work of P61ya and Szeg~5 [5-1. 

§3. A Generalisation. In the first two sections we considered s-systems {K(u)} 
with one system parameter u. We now present a brief account ofa  generalisation 
which provides geometrical insight into the properties of the projection function 
P(K, R)(1 < r < n - 1) discussed in recent publications of  H. Busemann, G. Ewald 
and the author [4]. For notations and terminology, the reader is referred to this 
paper. 

Let K be any closed bounded convex set in E n+ , ~ any n-dimensional linear 
subspace and a l ,  "", at be unit vectors normal to ~ and to each other. Put 

t t 

(18) K ( u l , . . . , u t ) = { x -  E ~i u , lx  + ~ (ia,¢K} 
i = 1  i = I  

for any set {ul, " ' ,  u,} of vectors parallel to ~¢f. Then {K(ul ,  ..., u,)} will be 
called, as the u~ vary, an s-system of convex sets with t system parameters 
u~ , . . . ,  u,. If  one system parameter varies, and the remainder are fixed, 
{K(ux, ..., ut)} is an s-system as previously defined. It is natural to ask whether 
a system with t parameters has corresponding convexity properties to those of 
§2 when the parameters are allowed to vary simultaneously. 

Let T be any simple t-vector, then, with K and ~ as above, we define S(T, K ,X  ~) 
(the shadow of K on ~ in the direction T) to be 

J/f N Z(K, T) 

where Z(K, T ) i s  the cylinder {x + y l x e  K, y l[ T} containing K and with t- 
dimensional generators parallel to T. Then 
(19) K(u l , . . . ,  u,) = S(T, K, ~ )  where 

T =  (al + ui) ^ (a2 q- U2) A " ' "  A (a, + U,). 

To see this, we notice that 

x -  ~ui + E ~(a~ + u~) = x + ~ ~a~, 
i = 1  i = l  1 = 1  

so that the line joining x -  ~,(iui to x + ~,~iai is linearly dependent on 
al + u l ,  " ' ,  at + ut and so is parallel to T. Consequently x - ~ i u t  is the unique 
point which a t-dimensional subspace parallel to T, through the point x + ~ (ia~ 

K meets ~ .  From this, (19) follows immediately. 
We can show that 

(20) For the s-system defined by (18), 



236 O. C. SI-IEPHARD 

Vn(K(ul , ..., u,)) = P(K, T ' )  

where T = (al + ul) ^ "" ^ (at "Jr ut) and T l is the simple n-vector normal 
to Z w i t h l T  "L I = IT I .  

(In terms of components, 

2. 
Thi2...i. = Tt.+,i.+2...~ . 

if 01 "'" in+t) is an even permutation of (I, 2, . . . ,  n + t).) 
Let To = al  ^ ."  ^ at.  Since K(Ul, ..., ut) and P ( K , 3  --L) (where ~'_L is the 

n-dimensional subspace of E"+t through the origin determined by the vector T -L) 
are cross-sections of the same cylinder, the latter being the normal cross-section, 
we deduce 

v.(P(K, gr±)) I T" To l 
v,(g(u,,..., u,))- I TII To l 

However [ To = 1, T • To l = 1 from the way in which T and To were defined, 

and lT I = I . Hence 

v,(K(u, ,  ..., u,)) = I T± ] P ( K ' 3 " )  

= tO(K,T ±) 

by definition. Thus (20) is proved. 
Relation (20) enables us to deduce immediately the properties of the system 

{ K ( u ,  ..., ut)} from the properties of P(K,R) given in 14] and 1,7]. For example, 
we see that if n > 2, v,(K(ul, ..., ut)) is not in general, a convex function of T j- 
for t > 1, but is, in certain special cases. For example it is so if K is a simplex of 
at most n + 2 dimensions I-7, p. 307] or if K is a vector sum of line 
segments [4, p. 20]. The fact that v,(K(ul ,..., uf)) is, for all K, a convex function 
of each parameter u s separately corresponds to the fact that/~(K, T ±) is a weakly 
convex function [4, p. 34], i.e. is convex on the generators of G~ +t. 
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